McMillen, David R.

Ph.D. | Associate Professor | Associate ChairChemistry - Biophysics & Biophysical Chemistry
Picture of David R. McMillen

Contact Information

Phone: 
905 828.5353
Fax: 
905 828.5425
Rm. DV4056
3359 Mississauga Road North
Mississauga, Ontario
L5L 1C6

Research

David's Research picture We apply a combination of experimental and theoretical techniques to study the internal dynamics of cells, with specific reference to processes such as gene expression and regulation. Working in simple organisms as such a bacteria allows us to address simplified systems by constructing our own novel genetic regulatory networks, inserting them into living cells, and comparing their behaviour to that of theoretical/computational models of biochemical reaction kinetics. We also have a program in synthetic biology, where we are interested in using these simplified genetic networks as controllers designed to alter the internal dynamics of cells in predictable ways, with the long-term goal being the ability to carry out medical interventions from inside the cell.

 

Publications

Jordan Ang, Brian Ingalls, and David R. McMillen (2011). Probing the input-output behavior of biological systems: system identification methods from control theory.  Methods in Enzymology 487 (Computer Methods, Part C): 279-317.

Sangram Bagh, Mahuya Mandal, and David R. McMillen (2011).  An active intracellular device to prevent lethal viral effects in bacteria.  Biotechnology and Bioengineering 108(3): 645-654.

Jordan Ang, Sangram Bagh, Brian P. Ingalls, and David R. McMillen (2010).  Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network.  Journal of Theoretical Biology 266(4): 723-738.  (published online at here).  

Sangram Bagh, Mahuya Mandal, and David R. McMillen (2010).  Minimal genetic device with multiple tunable functions.  Physical Review E 82(2): 021911.  (published online here).

Sangram Bagh and David R. McMillen (2009).  A synthetic genetic circuit whose signal-response curve is temperature-tunable from band-detection to sigmoidal behaviour.  Natural Computing (published online (.pdf) here).

Marco Iafolla, Mostafizur Mazumder, Vandit Sardana, Tharsan Velauthapillai, Karanbir Pannu, and David R. McMillen (2008).  Dark proteins: inclusion body quantification.  Proteins: structure, function, and bioinformatics 72: 1233-1242.

Sangram Bagh, Mostafizur Mazumder, Tharsan Velauthapillai, Vandit Sardana, Guang Qiang Dong, Ashok B. Movva, Len H. Lim, and David R. McMillen (2008).  Plasmid-borne prokaryotic gene expression: sources of variability and quantitative system characterization.  Physical Review E 77: 021919.

Guang Qiang Dong and David R. McMillen (2008).  Effects of protein maturation on the noise in gene expression.  Physical Review E 77: 021908

Marco Iafolla, Guang Qiang Dong, and David R. McMillen (2008).  Increasing the accuracy of bacterial transcription simulations: when to exclude the genome without loss of accuracy.  BMC Bioinformatics 9: 373.

Guang Qiang Dong, Luke Jakobowski, Marco Iafolla, and David R. McMillen (2007).  Simplification of stochastic chemical reaction models with fast and slow dynamics.  Journal of Biological Physics 32: 67-95.

Marco A. J. Iafolla and David R. McMillen (2006). Extracting biochemical parameters for cellular modeling: A ‘mean-field’ approach.  Journal of Physical Chemistry-B 110: 22019-22028.

Guang Qiang Dong, Luke Jakobowski, and David R. McMillen (2006). Systematic reduction of a stochastic signalling cascade model.  Journal of Biological Physics 32: 173-176.

Nicholas Guido, Xiao Wang, David Adalsteinsson, David R. McMillen, Jeff Hasty,  Charles Cantor, Timothy Elston, and James Collins (2006).  A bottom-up approach to gene regulation.  Nature 439: 856-860.

David Adalsteinsson, David R. McMillen, and Timothy C Elston (2004).Biochemical Network Stochastic Simulator (BioNetS): Software for Stochastic Modeling of Biochemical Networks.  BioMed Central  (BMC) Bioinformatics 5:24.